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Quantum Brownian Motion. II
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This paper generalizes some previous results presented in Gaioli et al. [Int. J.
Theor. Phys. 36, 2167 (1997)]. We evaluate the autocorrelation function of the
stochastic acceleration and study the asymptotic evolution of the mean occupation
number of a harmonic oscillator playing the role of a Brownian particle. We also
analyze some deviations from the Bose population at low temperatures and
compare it with the deviations from the exponential decay law of an unstable
quantum system.

1. INTRODUCTION

This work is an extension of some analytical results that have already

been presented in a previous paper on Brownian motion (Gaioli et al., 1997),

hereafter referred to as paper I.5 In I we considered a model consisting of a

Brownian oscillator of frequency V linearly coupled to a bath of harmonic

oscillators in the rotating wave approximation. This model has an exact
solution from which we studied the time evolution of the relevant physical

quantities, e.g., the mean position ^ X (t) & and mean population ^ N V (t) & of the

Brownian oscillator. We showed that the equation of motion governing the

evolution of ^ X & is a generalized-local-in-time form of the Langevin equation

(in mean values), with time-dependent coefficients (see also Garcia Alvarez

and Gaioli, 1998). On the other hand, the equation of motion corresponding
to ^ N V & is a generalized-local-in-time form of the master equation, with time-
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dependent coefficients [this was anticipated in I, but finally shown in Garcia

Alvarez and Gaioli (1998)].

In Section 2 we reobtain the generalized Langevin equation (I.42), but
in this case without considering it in mean values. Then a new term appears,

which plays the role of a stochastic acceleration. Evaluating the time-depen-

dent coefficients through a perturbative procedure up to the first relevant

order, we recover the standard form of the Langevin equation, where the

coefficients are independent of time and the stochastic acceleration has a

zero-centered distribution leading to white noise in the classical limit.
In Section 3 we show that the same perturbative analysis mentioned

above performed on equation (I.33) leads to the solution of an approximated

equation for the mean population ^ N V & introduced by van Kampen [equation

(XVII.2.30) of van Kampen (1992)]. Van Kampen’ s equation, which is the

Born approximation of the generalized master equation derived in a previous

work (Garcia Alvarez and Gaioli, 1998), makes explicit the temporal behavior
of ^ N V & : It decays exponentially until reaching thermal equilibrium with the

heat bath, i.e., the Bose distribution. This behavior was shown in the figures

of paper I, obtained from the exact solution of the model. However, a careful

evaluation of the asymptotic value of ^ N V & shows that some deviations from

the Bose population arise. That is, at high and intermediate temperatures the
equilibrium value corresponds to the Bose distribution at the renormalized

frequency V 1 d V , where d V is a shift proportional to the square of the

perturbation strength, while at low temperatures a power-law behavior is

found. This deviation is related to the long-time tail of the decay probability

P V V (t)Ð known as the Khalfin effect (Khalfin, 1957)Ð of the unstable one-

particle state | V & .
In Section 4 we outline our main conclusions; there are also two appendi-

ces: Appendix A contains the details of the calculation of the autocorrelation

function of the stochastic acceleration and Appendix B includes an explicit

derivation of the exponential decay law and the Khalfin effect.

2. GENERALIZED LANGEVIN EQUATION AND THE
ª STOCHASTICº ACCELERATION

The Hamiltonian [equation (I.5)] of the composed system is given by

H 5 V 1 B ² B 1
1

2 2 1 o
N

n 5 1

v n 1 b ²
nbn 1

1

2 2 1 o
N

n 5 1

gn(Bb ²
n 1 B ² bn) (1)

The position of the subsystem Brownian oscillator X (t) 5 (2M V ) 2 1/2[B ² (t) 1
B (t)] can be rewritten from equation (I.26) as
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X (t) 5 a (t)X (0) 1 b (t)
P (0)

M V
1 f (t)

where

a (t) 5 o
N

n 5 0

| F n | 2 cos( a n t)

b (t) 5 o
N

n 5 0

| F n | 2 sin( a n t) (2)

f (t) 5
1

! M V o
N

n 5 0
o
N

n 5 1

gn

a n 2 v n

| F n | 2

3 F ! mn v n cos( a n t) xn(0) 1
sin( a n t)

! mn v n

pn(0) G
and

| F n | 2 5 F 1 1 o
N

n 5 1 1 gn

a n 2 v n 2
2

G
2 1

Since we have two constants of integration X (0) and P (0) and a particular

solution f (t), X (t) satisfies a second-order differential equation such as

XÈ (t) 1 V 2(t)X (t) 1 G (t)XÇ (t) 5 F (t) (3)

with the inhomogeneous term given by

F (t) 5 fÈ (t) 1 V 2(t)f (t) 1 G (t)fÇ (t) (4)

The unknown coefficients V 2(t) and G (t) can be easily determined by solving

the linear system which results by replacing the two independent solutions

of the homogeneous equation:

aÈ (t) 1 V 2(t)a (t) 1 G (t)aÇ (t) 5 0

bÈ (t) 1 V 2(t)b (t) 1 G (t)bÇ (t) 5 0

that is,

V 2(t) 5
aÇ bÈ 2 bÇ aÈ

abÇ 2 baÇ
, G (t) 5

baÈ 2 abÈ

abÇ 2 baÇ
(5)

Garcia Alvarez and Gaioli (1998) have written these coefficients in terms of

the survival amplitude (and its complex conjugate) of the state | v 0 & [
| V & 5 B ² | 0 & :
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A V V (t) [ ^ V | e 2 iht | V & 5 a (t) 1 ib(t)

where

h 5 V | V & ^ V | 1 o
N

n 5 1

v n | v n & ^ v n | 1 o
N

n 5 1

gn ( | V & ^ v n | 1 | v n & ^ V | ) 1 C

[equation (I.7); we are calling now the Hamiltonian h instead of H1, according
to the notation of Garcia Alvarez and Gaioli (1998)], and C is the zero-point

energy. This survival amplitude is the cornerstone of the theory of unstable

quantum systems.

On the other hand, the mean value of the ª stochasticº acceleration F (t)
vanishes since in the thermal initial distribution (I.29) [ r (0) 5 r B(0) ^
e 2 b Hb /trb(e

2 b Hb), where Hb 5 S N
n 5 1 v n (b ²

nbn 1 1/2) and trb is the partial trace
over the reservoir], the bath operators have vanishing mean values,

^ F (t) & 5 0 (6)

Performing a perturbative expansion up to the first relevant order in the

coupling parameter, we can recover the standard form of the Langevin equa-

tion. So, in this case we have

XÈ (t) 1 ( V 1 d V )2 X (t) 1 g XÇ (t) 5 F (t) (7)

where d V is the shift of the frequency and g the damping coefficient.
To see this we evaluate the survival amplitude up to the second order

from (Sakurai, 1995)

A V V (t) 5 e 2 i V tc V V (8)

where

c V V 5 1 2 o
N

k 5 1
g 2

k #
t

0 #
t8

0

e i v V kt
8
e i v k V t9 dt8 dt 9 (9)

and v V k 5 V 2 v k. Taking the derivative of equation (9) with respect to

time, up to second order, we obtain

cÇ V V

c V V
5 1 2 i o

N

k Þ 0

g 2
k ( 2 i #

t

0

e i v V k t d t )

Performing a long-time approximation (t . . 1/ V ), we obtain

lim
t ® `

( 2 i #
t

0

e i a t d t ) 5 d +( a ) 5
1

a 1 i e
5 Pv

1

a
2 i p d ( a ) (10)

where Pv denotes the principal value. Therefore the survival amplitude of

the state | V & has a decaying exponential contribution [cf. equation (B10)]
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A V V (t) 5 e 2 i( V 1 d V 2 i g /2)t (11)

where6

d V 5 Pv o
N

k Þ 0

g 2
k

V 2 v k

(12)

and

g 5 2 p o
N

k Þ 0

g 2
k d ( v k 2 V ) (13)

If we now use the second-order value (11) of the amplitude A V V in

equation (5), a straightforward evaluation leads to

V (t) 5 V 1 d V , G (t) 5 g (14)

so we retrieve standard expressions usually derived from the Born and Marko-

vian approximations. In our case the Markovian approximation is not neces-
sary because equation (3) is just local in time, in contrast with the better

known integrodifferential form commonly found in the literature (Louisell,

1973, 1977; Sargent et al., 1974; Lindenberg and West, 1984, 1990; Ford et
al., 1988a, b; Meystre and Sargent, 1991; Cohen-Tannoudj i et al., 1992;

Mandel and Wolf, 1995).

The autocorrelation function of the ª stochasticº acceleration is
defined by

K (t) 5
1

2
^ F (0)F (t) 1 F (t)F (0) &

Up to the second order, by means of a long, but straightforward calculation

(see Appendix A), we obtain

K (t) 5
1

2M V o
N

m 5 1

{[2 ^ Nm(0) & 1 1]g 2
m( v m 1 V )2 cos v mt} (15)

For an initial thermal distribution for the bath oscillators, i.e., 2 ^ Nm(0) & 1 1

5 coth( b v m/2), and by taking the limit of a continuous bath (see paper I),

K (t) becomes

K (t) 5
1

2M #
`

0

d v g 2( v )
( v 1 V )2

V
coth

b v
2

cos v t

where g 2( v ) is defined as

6 The following expressions must be understood as if a continuous limit has been taken in such
a way that summations become integrals. On the contrary, we must replace the principal part
and delta distributions by their corresponding approximants.



188 Gaioli, Garcia Alvarez, and ArboÂ

g 2( v ) D v 5 o
n | ( v , v n , v 1 D v )

g 2
n

(Ullersma, 1966; van Kampen, 1992).

Considering a coupling function g 2( v ) which is peaked7 around v 5
V , then we can replace 1±2 g 2( v )( v 1 V )2/ V by ( v / p )2 p g 2( V ) in the integrand.

Taking into account that, up to the second order [see equation (13)], the

damping factor in the Langevin equation is g 5 2 p g 2( V ), we finally have

K(t) ’
g

M p #
`

0

d v " coth
b " v

2
cos v t 5

g kBT

M

d

dt
coth 1 p kBTt

" 2
In the classical limit ( " ® 0) it goes to the classical stochastic, delta-correlated,

autocorrelation function

lim
" ® 0

K (t) 5
2 g kBT

M
d (t) (16)

originally proposed by Langevin.

Equation (16) corresponds to instantaneous correlated fluctuations,

which leads to a Markovian process (instantaneous memory loss, since the
values of the stochastic acceleration at two different times are not correlated).

F (t) is the source of noise (fluctuations) known as white noise. In this limit

the usual Langevin equation (7) together with properties (6) and (16) are

recovered from a general formulation. A new ingredient is that in equation

(7) the oscillator frequency is shifted by a value d V .

3. BEHAVIOR OF THE MEAN POPULATION OF THE
BROWNIAN OSCILLATOR

Van Kampen (1992) showed that the elimination of fast microscopic
variables leads to a closed expression for the mean value of the occupation

number of the Brownian oscillator

d

dt
^ N V (t) & 5 2 g ^ N V (t) & 1

g
e b V 2 1

(17)

where irrelevant variables get in only through the initial thermal state at a

temperature T 5 1/kB b .

In what follows we use the time-dependent perturbation theory to derive

equation (17) starting from equation (I.33) of I:

7 This condition is necessary in order for the rotating wave approximation to be valid (see, e.g.,
Gaioli, 1997).
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^ N V (t) & 5 P V V (t) ^ N V (0) & 1 o
N

n 5 1

P V n(t) ^ Nn(0) & (18)

We consider that the perturbation [interaction of equation (1)] is time

independent and turns on at t 5 0. In this case the Dyson series for the
transition amplitude to second order can be written as (Sakurai, 1995)

Anm(t) 5 e 2 i v mt 1 c (0)
mn 1 c (1)

mn 1 c (2)
mn 1 . . . 2 (19)

where

c (0)
mn 5 d mn

c (1)
mn 5 2 i #

t

0

e i v mnt8 vmn dt8 (20)

c (2)
mn 5 2 o

N

k 5 0 #
t

0 #
t8

0

e i v mkt8 vmke
i v knt9 vkn dt8 dt9

with vmn 5 ^ v m | v | v n & 5 gm d n,0 1 gn d m,0, except for v00 5 0, and v mn 5
v m 2 v n. The evaluation of the transition probabilities to second order gives

Pnm 5 d nm 1 G nmt (21)

with

G nm 5 2 p v 2
nm d t( v n 2 v m) for n Þ m (22)

and

G nm 5 2 2 p o
m Þ n

v 2
nm d t( v n 2 v m) (23)

where d t( a ) [ (sin2 a t / p a 2t) is a function which approaches Dirac’ s delta

when time goes to infinity.8 Introducing these results into equation (18) and

taking into account that G 00 5 G V V [ 2 g and that, in this case, P V V .
1 2 g t, we obtain

8 Let h be the width of the interaction function g 2
n. Since the function d t ( a ) has a width

4 p /t, in order to behave as a delta distribution we need times such that t . . 4 p /h . This is
the meaning of long times. We also see that the times involved in this approximation must
satisfy t , , 1/ g , where g 5 2 G 00, in order for equation (21) to be valid. This condition and
the long-time limit restrict the time range to 4 p / h , , t , , 1/ g .
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^ N V (t) & . (1 2 g t) ^ N V (0) & 1 g t ^ N v n 5 V (0) &

5 (1 2 g t) ^ N V (0) & 1
g t

e b V 2 1

which is the second-order perturbative expansion of

^ N V (t) & . e 2 g t ^ N V (0) & 1 (1 2 e 2 g t)
1

e b V 2 1
(24)

Equation (24) corresponds to the solution of equation (17) [cf. equation

(XVII.2.29) of van Kampen (1992)]. This is also the second-order approxima-

tion of the solution of the exact master equation of Garcia Alvarez and

Gaioli (1998).

We emphasize that this is a perturbative result. A full exact calculation
can be carried out in the limit of a continuous bath (as it was taken in Section

6 of paper I). We now calculate the asymptotic long-time equilibrium value

of the mean population of the Brownian particle under this limit. We begin

with equation (I.76), but setting v min and v max equal to zero and infinity,

respectively, so we have

^ N V ( ` ) & 5 #
`

0

d v
g 2( v )

| R 2 1
1 ( v ) | 2

1

e b v 2 1
(25)

By considering now ª no-lowº temperatures and a small coupling, it is

easy to see that g 2( v ) | R 2 1
1 ( v ) | 2 2 picks the value at v 5 V 1 d V and

therefore has a d ( v 2 V 2 d V ) behavior.

Thus equation (25) leads to the thermal equilibrium value at the shifted

frequency V 1 d V , i.e.,

^ N V ( ` ) & 5 ^ N v 5 V 1 d V (0) & 5
1

e b ( V 1 d V ) 2 1
(26)

In the classical limit ^ N V ( ` ) & ’ [ b ( V 1 d V )] 2 1, which leads to the
equipartition of energy E ’ kBT (two quadratic degrees of freedom in a one-

dimensional configuration space) and the heat capacity C n ’ kB.

At low temperatures, deviations (an inverse power-law falloff in expecta-

tion values) from this equilibrium distribution were already reported by some

authors (Lindenberg and West, 1984, 1990; Haake and Reibold, 1985; Joichi
et al., 1997), since the effect of the coupling becomes macroscopically observ-

able. This effect is similar to the deviation from the exponential decay law

for long times first described by Khalfin (1957). In Appendix B we explicitly

calculate the survival amplitude using the resolvent method. In such a case

we show that A V V reduces to [equation (B8)]
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A V V (t) 5 #
`

0

d v
g 2( v )

| R 2 1
1 ( v ) | 2

e 2 i v t (27)

Comparing equation (27) with the low-temperature limit of equation (25),

^ N V ( ` ) & 5 #
`

0

d v
g 2( v )

| R 2 1
1 ( v ) | 2

e 2 b v (28)

we can see that, by making the identification b 5 it, both expressions are

equivalent. That is, the low-temperature regime of the mean occupation

number corresponds to the long-time behavior of the survival amplitude of

the unstable state | V & . This is one of the deep interrelationships between

statistical properties of nonequilibrium ensembles and the behavior of unstable
quantum systems. This was possible since our model [equation (1)] can be

decomposed by sectors of a fixed number of quanta [see equation (I.6)],

which is one of the reasons for our choice of the model.

We then use the long-time limit of the survival amplitude (Khalfin effect)

of Appendix B [equation (B12)] in order to estimate the low-temperature

anomalous behavior of the mean population, namely

^ N V ( ` ) & , (kBT )n 1 1 (29)

The energy of the Brownian oscillator behaves like E , Tn 1 1 and so C n ,
T n, which is an analogous result to the low-temperature behavior of the
Debye model of phonons (Huang, 1987). One of the advantages of this kind

of calculation is that equation (29) can be experimentally measured and then

it provides an indirect proof of the existence of the Khalfin effect, which is

very difficult to measure because of the time scale involved. However, the

other deviation from the exponential decay law, the Zeno effect (Misra and

Sudarshan, 1977), was recently measured for the first time (Wilkinson et
al., 1997).

We have seen that the anomalous behavior of the mean population at

low temperatures [equation (29)] is related to the deviations of the exponential

decay law of the unstable initially prepared state | V & at very long times. We

can also see another relation between this anomaly and a generalized statistics

proposed by Tsallis (1988) 10 years ago (see also Curado and Tsallis, 1991).
Let us see the origin of this conjecture.

BuÈ yuÈ kkilicË and Demirhan (1993) and BuÈ yuÈ kkilicË et al. (1995) have

shown that for a set of bosons, labeled by the index k, the mean occupation

number corresponding to the generalized Bose±Einstein canonical distribu-

tion is approximately9 given by

9 The fact that this is a nonexact result was noticed by Pennini et al. (1995).
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^ Nk & . 1

[1 1 (q 2 1) b v k]
1/(q 2 1) 2 1

(30)

where q is a parameter which characterizes the nonextensive nature of the

system, and thus depends on the long-range nature of interactions present in

the system. This parameter is such that for q ® 1 one retrieves the standard

results, i.e., the Bose±Einstein mean population. For q Þ 1, in the low-

temperature regime, we can neglect the terms independent of temperature in

the denominator of expression (30). Then, we have

^ Nk & , (kBT )1/(q 2 1) (31)

Compare equation (31) with equation (29). We see that the equilibrium

distribution reached by the Brownian oscillator resembles that of the bosons

in thermal equilibrium for a nonextensive system, according to Tsallis’ pre-

scription. From these equations we obtain

q 5
n 1 2

n 1 1

a number which satisfies 1 , q , 2, since n . 0. Maybe the explanation

of this behavior is that the Brownian oscillator is not able to cover all

accessible quantum states (as a consequence of strong quantum correlations

at low temperatures) and then it cannot reach the most probable distribution

according to the ergodic hypothesis.

4. CONCLUSIONS

In this paper the autocorrelation function of the stochastic acceleration

and the asymptotic mean population of the Brownian oscillator were analyti-

cally evaluated from a deterministic quantum dynamics. As regards the

Langevin equation, we have provided the stochastic term which was skipped

in paper I. For the mean occupation number we have found that it reaches

thermal equilibrium at the bath temperature corresponding to the Bose popula-

tion. At low temperatures a deviation from this population was found which

has a common origin with the deviations from the exponential decay law.

However, the Khalfin effect is very difficult to measure since the usual

observation times of unstable quantum systems are much shorter than the

time the decay law is no longer exponential.
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APPENDIX A. AUTOCORRELATION FUNCTION OF THE
STOCHASTIC ACCELERATION

According to equation (4), K (t) is given by

K (t) 5
1

2
[ ^ fÈ (0)fÈ (t) 1 fÈ (0) V 2(t)f (t) 1 fÈ (0) G (t)fÇ (t)

1 V 2(0)f (0)fÈ (t) 1 V 2(0)f (0) V 2(t)f (t) 1 V 2(0)f (0) G (t)fÇ (t)

1 G (0)fÇ (0)fÈ (t) 1 G (0)fÇ (0) V 2(t)f (t) 1 G (0)fÇ (0) G (t)fÇ (t) &

1 ^ 0 % t & ] (A1)

where ^ 0 % t & stands for interchanging t 5 0 with t. f (t) can be written in

terms of the A V m as

f (t) 5
1

! 2M V o
N

m 5 1

[A V m(t)b ²
m(0) 1 h.c.] (A2)

Considering second-order contributions only and taking into account

that d V and G are time independent up to this order, we can rewrite equation
(A1) as

K (t) 5
1

2
[ ^ fÈ (0)fÈ (t) 1 V 2fÈ (0)f (t) 1 V 2f (0)fÈ (t) 1 V 4f (0)f (t) &

1 ^ 0 % t & ]

since the f ’ s are linear in the A V m [see equation (A2)]. We need to expand
the amplitudes up to the first order. From equations (19) and (20) we have

A V m(t) 5 2 ie 2 v mtvm V #
t

0

e i( v m 2 V )t8dt8

Solving the integral, we have

A V m(t) 5
vm V

v m 2 V
(e 2 i v mt 2 e 2 i V t)

The second derivative of A V m(t) appearing in fÈ is given by

AÈ V m(t) 5
vm V

v m 2 V
( 2 v 2

me 2 i v mt 1 V 2e 2 i V t)
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Taking into account that A V m(0) 5 0, from which f (0) 5 0, then we must

only calculate

K (t) 5
1

2
[ ^ fÈ (0)fÈ (t) 1 V 2fÈ (0)f (t) & 1 ^ 0 % t & ]

Let us see each term step by step. Let K1 and K2 be defined by

K1(t) 5
1

2
^ fÈ (0)fÈ (t) 1 fÈ (t)fÈ (0) &

and

K2(t) 5
V 2

2
^ fÈ (0)f (t) 1 f (t) fÈ (0) &

Therefore

K1(t) 5
1

2

1

M V o
N

m,m8 5 1

[AÈ V m (0)AÈ *V m8(t) ^ b ²
mbm8 & (0) 1 AÈ *V m(0)AÈ V m8 (t) ^ bmb ²

m8 & (0)

1 AÈ V m (t)AÈ *V m8(0) ^ b ²
mbm8 & (0) 1 AÈ *V m(t) AÈ V m8(0) ^ bmb ²

m8 & (0)]

which, from equation (I.30) and the commutation relations (I.4), is reduced to

K1(t) 5
1

4M V o
N

m 5 1
{Re[AÈ V m(0)AÈ *V m(t)] [2 ^ Nm & (0) 1 1]}

5
1

2M V o
N

m 5 1 H [2 ^ Nm & (0) 1 1]
| vm V | 2

v m 2 V
( v m 1 V ) ( v 2

m cos v m t 2 V 2 cos V t) J
An analogous calculation for K2(t) leads to

K2(t) 5
V

2M o
N

m 5 1

{Re[AÈ V m (0)AÈ *V m(t)] [2 ^ Nm & (0) 1 1]}

5
1

2M V o
N

m 5 1 H [2 ^ Nm & (0) 1 1]
| vm V | 2

v m 2 V
( v m 1 V ) ( V 2 cos V t 2 V 2 cos v mt) J

Joining K1 and K2, we finally obtain equation (15)

K (t) 5
1

2M V o
N

m 5 1

{[2 ^ Nm & (0) 1 1] | vm V | 2( v m 1 V )2 cos v mt
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APPENDIX B. EVALUATION OF THE SURVIVAL AND
TRANSITION AMPLITUDES

We analyze the analytical structure of A V V (t) in order to show how an

exponential contribution arises for a significant range of time and how deviations

from this behavior appear. Using the well-known identity between distributions

1

x 6 i e
5 PV

1

x
7 i p d (x) (B1)

we can obtain, for x 5 v 2 h, the following integral representation of the

evolution operator:

e 2 iht 5
1

2 p i #
`

2 `

d v e 2 i v t [G 2 ( v ) 2 G+( v )] (B2)

where G 6 ( a ) 5 1/( a 6 i e 2 h) is the retarded ( 1 ) [advanced ( 2 )] Green

function of the time-independent SchroÈ dinger equation (the resolvent), corres-

ponding to the total Hamiltonian. From (B2) we can evaluate the survival
and transition amplitudes. Such a calculation involves the knowledge of the

partial resolvents (Schwinger, 1961; Messiah, 1962), departing from

( a 6 i e 2 h) G 6 ( a ) 5 I (B3)

By taking the matrix elements in equation (B3), we have

( a 6 i e 2 V ) ^ V | G 6 ( a ) | V & 1 #
`

0

d v g ( v ) ^ v | G 6 ( a ) | V & 5 1 (B4)

( a 6 i e 2 v ) ^ v | G 6 ( a ) | V & 5 g ( v ) ^ V | G 6 ( a ) | V & 5 0 (B5)

So, from (B4) and (B5), the desired matrix elements of the resolvent are

^ V | G 6 ( a ) | V & 5
1

a 6 i e 2 V 2 #
`

0

d v [g 2( v )/( a 6 i e 2 v )]

5 R 6 ( a )

and

^ v | G 6 ( a ) | V & 5
g ( v )

a 6 i e 2 v
^ V | G 6 ( a ) | V &

Now returning to (B2), we can obtain the survival and transition amplitudes as

A V V (t) 5 ^ V | e 2 iht | V &

5
1

2 p i #
`

2 `

d v 8 e 2 i v 8t [R 2 ( v 8) 2 R+( v 8)] (B6)
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A V v (t) 5 ^ v | e 2 iht | V &

5
1

2 p i #
`

2 `

d v 8 e 2 i v 8t F g ( v 8)R 2 ( v 8)

v 2 i e 2 v 8
2

g ( v 8)R+( v 8)

v 1 i e 2 v 8 G (B7)

i.e., taking the Fourier transform of the difference between the advanced and

retarded reduced resolvents (note that we have not introduced any initial

condition for the amplitudes). It can be proved that the reduced resolvents

have the general expression

R 6 ( v ) 5
1

v 6 i e 2 V 2 S 6 ( v )

where S ( v ) is the level-shift operator in the subspace generated by | V & . The

reduced resolvent R+( v ) [R 2 ( v )] is the analog of the exact Feynman (Dyson)

electron propagator with S 6 ( v ) playing the role of the Dyson (1949) mass

operator. In our case S 6 ( a ) 5 #
`

0

d v [g 2( v )/( a 6 i e 2 v )]. Using (B1), we

can rewrite it as S 6 ( a ) 5 D ( a ) 7 i g ( a )/2, with

D ( a ) 5 PV #
`

0

d v
g 2( v )

a 2 v

g ( a ) 5 2 p g 2( a )

which are nothing else than equations (12) and (13) in the case of a continuous

bath. Taking into account that g ( v ) 5 0 for v , 0, we can rewrite equation

(B6) as

A V V (t) 5 #
`

0

d v
g 2( v )

| R 2 1
1 ( v ) | 2

e 2 i v t (B8)

In the theory of unstable states (Messiah, 1962; Goldberger and Watson,

1964; Cohen-Tannoudj i et al., 1992) it is common to find A V V written as

A V V (t) 5
1

2 p #
`

2 `

d v
g ( v )

[ v 2 V 2 D ( v )]2 1 1±4 g
2( v )

e 2 i v t (B9)

which allows one to easily study the different decay regimes. If g ( v ) is small,

the term [ v 2 V 2 D ( v )]2 is large compared with g 2( v ) except when v .
V 1 D ( V ). Thus we replace g ( v ) by g ( V ) [ g and D ( v ) by D ( V ) [ d V .

The Lorentzian function resulting from this replacement is known as the
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Breit±Wigner (1936) distribution. In this case equation (B9) has an analyti-

cal result

A V V (t) 5 e 2 i( V 1 d V )t e 2 d t/2 (B10)

which, as expected, retrieves the well-known exponential decay law as origi-

nally derived by Weisskopf and Wigner (1930). Some deviations from this
exponential decay arise as we inspect equation (B9) more carefully. If we

retain g ( v ) in the numerator of (B9), we can rewrite this equation as

A V V (t) 5
1

2 p #
`

2 `

d v
g

[ v 2 V 2 d V ]2 1 1±4 g 2

g ( v )

g
e 2 i v t (B11)

The r.h.s. of equation (B11) is the convolution product of (B10) and the
Fourier transform of g 2 1 g ( v ). Since g ( v ) has a finite width, its Fourier

transform g (t) has also a finite width. We also have that g ( v ) is null for v
# 0 and is not infinitely differentiable at v 5 0. Then, if we suppose that

g ( v ) goes as v n for small v , then g (t) behaves like t 2 (n 1 1) for very long

times. This is known as the Khalfin (1957) effect, namely

A V V (t) , 1/t n 1 1 (B12)
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